Январь 2010 Февраль 2010 Март 2010 Апрель 2010 Май 2010
Июнь 2010
Июль 2010 Август 2010 Сентябрь 2010
Октябрь 2010
Ноябрь 2010 Декабрь 2010 Январь 2011 Февраль 2011 Март 2011 Апрель 2011 Май 2011 Июнь 2011 Июль 2011 Август 2011 Сентябрь 2011 Октябрь 2011 Ноябрь 2011 Декабрь 2011 Январь 2012 Февраль 2012 Март 2012 Апрель 2012 Май 2012 Июнь 2012 Июль 2012 Август 2012 Сентябрь 2012 Октябрь 2012 Ноябрь 2012 Декабрь 2012 Январь 2013 Февраль 2013 Март 2013 Апрель 2013 Май 2013 Июнь 2013 Июль 2013 Август 2013 Сентябрь 2013 Октябрь 2013 Ноябрь 2013 Декабрь 2013 Январь 2014 Февраль 2014 Март 2014 Апрель 2014 Май 2014 Июнь 2014 Июль 2014 Август 2014 Сентябрь 2014 Октябрь 2014 Ноябрь 2014 Декабрь 2014 Январь 2015 Февраль 2015 Март 2015 Апрель 2015 Май 2015 Июнь 2015 Июль 2015 Август 2015 Сентябрь 2015 Октябрь 2015 Ноябрь 2015 Декабрь 2015 Январь 2016 Февраль 2016 Март 2016 Апрель 2016 Май 2016 Июнь 2016 Июль 2016 Август 2016 Сентябрь 2016 Октябрь 2016 Ноябрь 2016 Декабрь 2016 Январь 2017 Февраль 2017 Март 2017 Апрель 2017
Май 2017
Июнь 2017
Июль 2017
Август 2017 Сентябрь 2017 Октябрь 2017 Ноябрь 2017 Декабрь 2017 Январь 2018 Февраль 2018 Март 2018 Апрель 2018 Май 2018 Июнь 2018 Июль 2018 Август 2018 Сентябрь 2018 Октябрь 2018 Ноябрь 2018 Декабрь 2018 Январь 2019
Февраль 2019
Март 2019 Апрель 2019 Май 2019 Июнь 2019 Июль 2019 Август 2019 Сентябрь 2019 Октябрь 2019 Ноябрь 2019 Декабрь 2019 Январь 2020 Февраль 2020 Март 2020 Апрель 2020 Май 2020 Июнь 2020 Июль 2020 Август 2020 Сентябрь 2020 Октябрь 2020 Ноябрь 2020 Декабрь 2020 Январь 2021 Февраль 2021 Март 2021 Апрель 2021 Май 2021 Июнь 2021 Июль 2021 Август 2021 Сентябрь 2021 Октябрь 2021 Ноябрь 2021 Декабрь 2021 Январь 2022 Февраль 2022 Март 2022 Апрель 2022 Май 2022 Июнь 2022 Июль 2022 Август 2022 Сентябрь 2022 Октябрь 2022 Ноябрь 2022 Декабрь 2022 Январь 2023 Февраль 2023 Март 2023 Апрель 2023 Май 2023 Июнь 2023 Июль 2023 Август 2023 Сентябрь 2023 Октябрь 2023 Ноябрь 2023 Декабрь 2023 Январь 2024 Февраль 2024 Март 2024 Апрель 2024 Май 2024 Июнь 2024 Июль 2024 Август 2024 Сентябрь 2024 Октябрь 2024 Ноябрь 2024 Декабрь 2024 Январь 2025
1 2 3 4 5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
Жизнь |

Представление других измерений

Бомба замедленного действия: пропуск этого приема пищи убивает организм

«Желтый» уровень погодной опасности продлили в Москве из-за гололедицы

Модный тренд или «шиза»? Россиянки массово ринулись делать «лицо-утюг» и «уши эльфа»

Более двадцати катков зальют этой зимой в Мытищах

Большинству из нас, или, возможно, всем нам невозможно представить мир, состоящий из более чем трех пространственных измерений. Правильно ли утверждение, что такой мир не может существовать? Или просто человеческий разум не способен вообразить дополнительные измерения — измерения, которые могут оказаться такими же реальными, как и другие вещи, которые мы не можем увидеть?

Приверженцы теории струн делают ставку на то, что дополнительные измерения действительно существуют. На самом деле, уравнения, описывающие теорию суперструн, предполагают вселенную с не менее чем 10 измерениями. Но даже физикам, которые все время думают о дополнительных пространственных измерениях сложно описать как они могут выглядеть, или как люди могли бы приблизиться к их пониманию.

От 2D к 3D

Ранняя попытка объяснить концепцию дополнительных измерений появилась в 1884 году с публикацией романа о плоской земле Эдвина А. Эббота «Флатландия: романтика множества измерений«. Действие в романе разворачивается в плоском мире, называемом «Флатландия», а повествование ведется от лица жителя этого мира — квадрата. Однажды во сне квадрат оказывается в одномерном мире — Лайнландии, жители которой (треугольники и другие двумерные объекты представлены в виде линий) и пытается объяснить правителю этого мира существование 2-го измерения, однако, приходит к выводу о том, что его невозможно заставить выйти за рамки мышления и представления только прямых линий.

Квадрат описывает его мир как плоскость, населенную линиями, кругами, квадратами, треугольниками и пятиугольниками.

Однажды перед квадратом появляется шар, но его суть он не может постичь, так как квадрат в своем мире может видеть только срез сферы, только форму двумерного круга.

Сфера пытается объяснить квадрату устройство трехмерного мира, но квадрат понимает только понятия «вверх/вниз» и «лево/право», он не способен постичь понятия «вперед/назад». Непостижимая Квадратом тайна третьего измерения на примере прохождения сферы через плоскость. Герой наблюдает уменьшение Окружности до точки и её исчезновение.

Только после того, как сфера вытащит квадрат из его двумерного мира в свой трехмерный мир, он наконец поймет концепцию трех измерений. С этой новой точки зрения квадрат становится способен видеть формы своих соотечественников.

Квадрат, вооруженный своим новым знанием, начинает осознавать возможность существования четвертого измерения. Также он приходит к мысли, что число пространственных измерений не может быть ограничено. Стремясь убедить сферу в этой возможности, квадрат использует ту же логику, что и сфера, аргументирующая существование трех измерений. Но теперь из них двоих становится «близорукой» сфера, которая не может понять этого и не принимает аргументы и доводы квадрата — так же, как большинство из нас «сфер» сегодня не принимают идею дополнительных измерений.

От 3D к 4D

Нам сложно принять эту идею, потому что, когда мы пытаемся представить даже одно дополнительное пространственное измерение — мы упираемся в кирпичную стену понимания. Похоже, что наш разум не может выйти за эти границы.

Представьте себе, например, что вы находитесь в центре пустой сферы. Расстояние между вами и каждой точкой на поверхности сферы равно. Теперь попробуйте двигаться в направлении, которое позволяет вам отойти от всех точек на поверхности сферы, сохраняя при этом равноудаленность. Вы не сможете этого сделать.

Житель Флатландии столкнулся бы с такой же проблемой, если бы он находился в центре круга. В его двумерном мире он не может находиться в центре круга и двигаться в направлении, которое позволяет ему оставаться равноудаленными каждой точке окружности круга, если только он не перейдет в третье измерение. Увы, у нас нет проводника в четырехмерное пространство как в романе Эббота, чтобы показать нам путь к 4D.

Как насчет 10D?

В 1919 году польский математик Теодор Калуца предположил, что существование четвертого пространственного измерения может увязать между собой общую теорию относительности и электромагнитную теорию. Идея, впоследствии усовершенствованная шведским математиком Оскаром Кляйном, заключалась в том, что пространство состояло как из «расширенных» измерений, так и из «свернутых» измерений. Расширенные измерения — это три пространственных измерения, с которыми мы знакомы, и свернутое измерение находится глубоко в расширенных размерах. Эксперименты позже показали, что свернутое измерение Калуцы и Кляйна не объединило общую теорию относительности и электромагнитную теорию, как это первоначально предполагалось, но спустя десятилетия теоретики теории струн нашли эту идею полезной, даже необходимой.

Математика, используемая в теории суперструн, требует не менее 10 измерений. То есть для уравнений, описывающих теорию суперструн и для того чтобы связать общую теорию относительности с квантовой механикой, для объяснения природы частиц, для объединения сил и т. д. — необходимо использовать дополнительные измерения. Эти измерения, по мнению теоретиков струн, завернуты в свернутое пространство, изначально описанное Калуцей и Кляйном. Круги представляют собой дополнительный пространственный размер, свернутый в каждую точку нашего знакомого трехмерного пространства



Чтобы расширить скрученное пространство, чтобы включить эти добавленные размеры, представьте, что круги Калуцы-Клейна заменяются сферами. Вместо одного добавленного измерения мы имеем два, если рассматривать только поверхности сфер и три, если учесть пространство внутри сферы. Получилось всего шесть измерений. Так где же другие, которые требует теория суперструн?



Оказывается, что до того, как появилась теория суперструн, два математика Эудженио Калаби из Университета Пенсильвании и Шин-Тунг Яу из Гарвардского университета описали шестимерные геометрические формы. Если мы заменим сферы в скрученном пространстве этими формами Калаби-Яу, мы получим 10 измерений: три пространственных, а также шестимерные фигуры Калаби-Яу. Шестимерные формы Калаби-Яу могут объяснять дополнительные размеры, требуемые теорией суперструн.

Если теория суперструн будет доказана и идея мира состоящего из 10 или более измерений подтвердится, то появится ли когда-нибудь объяснение или визуальное представление более высоких измерений, которые сможет постичь человеческий разум? Ответ на этот вопрос навсегда может стать отрицательным, если только какая-то четырехмерная жизненная форма не «вытащит» нас из нашего трехмерного мира и не даст нам увидеть мир с ее точки зрения.

Источник



Rss.plus
WTA

Наоми Осака впервые с 2022 года вышла в финал турнира WTA

Читайте также

VIP |

Юра Борисов и Марк Эйдельштейн выдвинуты на главную британскую кинопремию BAFTA

Жизнь |

Как вырастить мини-огород у себя в квартире — овощи круглый год

VIP |

«Федя. Народный футболист»: Чем примечательна спортивная драма о легенде московского «Спартака»

Новости там, где Вы

Распродажа оборудования для косметологии от Cosmo Tech начнется в 2025 году

Звезда сериала «Красная Поляна» Рината Тимербаева рассказала, как скрывается от маньяков

Плоская обувь деформирует стопу: советы от врача-флеболога Смирновой

В Москве полицейский спас беременную женщину от пьяного мужа с ножом

Новости Крыма на Sevpoisk.ru

Реальные статьи от реальных "живых" источников информации 24 часа в сутки с мгновенной публикацией сейчас — только на Лайф24.про и Ньюс-Лайф.про.



Разместить свою новость локально в любом городе по любой тематике (и даже, на любом языке мира) можно ежесекундно с мгновенной публикацией и самостоятельно — здесь.





Авто

В отелях этих городов вы отдохнете максимально комфортно: свежая статистика